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Dart 3.3 is here! Try new extension types, next-generation JavaScript interop, and more.
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Enumerated types, often called enumerations or enums, are a special kind of class used to represent a fixed number of constant values.
info Note
All enums automatically extend the Enum class. They are also sealed, meaning they cannot be subclassed, implemented, mixed in, or otherwise explicitly instantiated.
Abstract classes and mixins can explicitly implement or extend Enum, but unless they are then implemented by or mixed into an enum declaration, no objects can actually implement the type of that class or mixin.

Declaring simple enums
#
To declare a simple enumerated type, use the enum keyword and list the values you want to be enumerated:
  dartenum Color { red, green, blue }


lightbulb Tip
You can also use trailing commas when declaring an enumerated type to help prevent copy-paste errors.

Declaring enhanced enums
#
Dart also allows enum declarations to declare classes with fields, methods, and const constructors which are limited to a fixed number of known constant instances.
To declare an enhanced enum, follow a syntax similar to normal classes, but with a few extra requirements:
	Instance variables must be final, including those added by mixins.
	All generative constructors must be constant.
	Factory constructors can only return one of the fixed, known enum instances.
	No other class can be extended as Enum is automatically extended.
	There cannot be overrides for index, hashCode, the equality operator ==.
	A member named values cannot be declared in an enum, as it would conflict with the automatically generated static values getter.
	All instances of the enum must be declared in the beginning of the declaration, and there must be at least one instance declared.

Instance methods in an enhanced enum can use this to reference the current enum value.
Here is an example that declares an enhanced enum with multiple instances, instance variables, getters, and an implemented interface:
  dartenum Vehicle implements Comparable<Vehicle> {
  car(tires: 4, passengers: 5, carbonPerKilometer: 400),
  bus(tires: 6, passengers: 50, carbonPerKilometer: 800),
  bicycle(tires: 2, passengers: 1, carbonPerKilometer: 0);

  const Vehicle({
    required this.tires,
    required this.passengers,
    required this.carbonPerKilometer,
  });

  final int tires;
  final int passengers;
  final int carbonPerKilometer;

  int get carbonFootprint => (carbonPerKilometer / passengers).round();

  bool get isTwoWheeled => this == Vehicle.bicycle;

  @override
  int compareTo(Vehicle other) => carbonFootprint - other.carbonFootprint;
}


merge_type Version note
Enhanced enums require a language version of at least 2.17.

Using enums
#
Access the enumerated values like any other static variable:
  dartfinal favoriteColor = Color.blue;
if (favoriteColor == Color.blue) {
  print('Your favorite color is blue!');
}


Each value in an enum has an index getter, which returns the zero-based position of the value in the enum declaration. For example, the first value has index 0, and the second value has index 1.
  dartassert(Color.red.index == 0);
assert(Color.green.index == 1);
assert(Color.blue.index == 2);


To get a list of all the enumerated values, use the enum's values constant.
  dartList<Color> colors = Color.values;
assert(colors[2] == Color.blue);


You can use enums in switch statements, and you'll get a warning if you don't handle all of the enum's values:
  dartvar aColor = Color.blue;

switch (aColor) {
  case Color.red:
    print('Red as roses!');
  case Color.green:
    print('Green as grass!');
  default: // Without this, you see a WARNING.
    print(aColor); // 'Color.blue'
}


If you need to access the name of an enumerated value, such as 'blue' from Color.blue, use the .name property:
  dartprint(Color.blue.name); // 'blue'


You can access a member of an enum value like you would on a normal object:
  dartprint(Vehicle.car.carbonFootprint);
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