Google uses cookies to deliver its services, to personalize ads, and to analyze traffic. You can adjust your privacy controls anytime in your Google settings. Learn more.
Okay

menu
[image: Dart]	Overview
	Docs
	Community
	Try Dart
	Get Dart
	

Dart 3.3 is here! Try new extension types, next-generation JavaScript interop, and more.
Read the blog post

	Overview
	Community
	Try Dart
	Get Dart
	Docs
	

	Tutorials & codelabs	Tutorials
	Codelabs	List of Dart codelabs
	Language cheatsheet
	Iterable collections
	Asynchronous programming

	Language	Introduction
	Syntax basics	Variables
	Operators
	Comments
	Metadata
	Libraries & imports
	Keywords

	Types	Built-in types
	Records
	Collections
	Generics
	Typedefs
	Type system

	Patterns	Overview & usage
	Pattern types

	Functions
	Control flow	Loops
	Branches

	Error handling
	Classes & objects	Classes
	Constructors
	Methods
	Extend a class
	Mixins
	Enums
	Extension methods
	Extension types
	Callable objects

	Class modifiers	Overview & usage
	Class modifiers for API maintainers
	Reference

	Concurrency	Overview
	Asynchronous support
	Isolates

	Null safety	Sound null safety
	Migrating to null safety
	Understanding null safety
	Unsound null safety
	FAQ

	Core libraries	Overview
	dart:core
	dart:async
	dart:math
	dart:convert
	dart:io
	dart:html

	Using streams
	Creating streams
	Futures and error handling

	Effective Dart	Overview
	Style
	Documentation
	Usage
	Design

	Packages	How to use packages
	Commonly used packages
	Creating packages
	Publishing packages
	Writing package pages
	Package reference	Dependencies
	Glossary
	Package layout conventions
	Pub environment variables
	Pubspec file
	Troubleshooting pub
	Verified publishers
	Security advisories
	Versioning

	Development	Futures, async, await
	JSON
	Number representation
	Google APIs
	Multi-platform apps
	Command-line & server apps	Overview
	Get started
	Write command-line apps
	Fetch data from the internet
	Write HTTP servers
	Libraries & packages
	Google Cloud

	Web apps	Overview
	Get started
	Deployment
	Libraries & packages

	Environment declarations

	Interoperability	C interop
	Objective-C & Swift interop
	Java & Kotlin interop
	JavaScript interop	Overview
	Usage
	JS types
	Tutorials
	Past JS interop

	Web interop

	Tools & techniques	Overview
	Editors & debuggers	IntelliJ & Android Studio
	VS Code
	Dart DevTools
	DartPad	Overview
	Troubleshooting DartPad

	Command-line tools	Dart SDK	Overview
	dart
	dart analyze
	dart compile
	dart create
	dart doc
	dart fix
	dart format
	dart info
	dart pub
	dart run
	dart test
	dartaotruntime
	Experiment flags

	Other command-line tools	build_runner
	webdev

	Static analysis	Customizing static analysis
	Fixing common type problems
	Fixing type promotion failures
	Linter rules
	Diagnostic messages

	Testing & optimization	Testing
	Debugging web apps

	What not to commit

	

	Resources	Breaking changes
	Language evolution
	Language specification
	Dart 3 migration guide
	Coming from ...	JavaScript to Dart
	Swift to Dart

	FAQ
	Glossary
	Books
	Videos

	Related sites	API reference
	Blog
	DartPad (online editor)
	Flutter
	Package site

Contents	Declaring simple enums
	Declaring enhanced enums
	Using enums

	⟨ Mixins
	Extension methods ⟩

description bug_report
Enumerated types

Contents	Declaring simple enums
	Declaring enhanced enums
	Using enums

Enumerated types, often called enumerations or enums, are a special kind of class used to represent a fixed number of constant values.
info Note
All enums automatically extend the Enum class. They are also sealed, meaning they cannot be subclassed, implemented, mixed in, or otherwise explicitly instantiated.
Abstract classes and mixins can explicitly implement or extend Enum, but unless they are then implemented by or mixed into an enum declaration, no objects can actually implement the type of that class or mixin.

Declaring simple enums
#
To declare a simple enumerated type, use the enum keyword and list the values you want to be enumerated:
 dartenum Color { red, green, blue }

lightbulb Tip
You can also use trailing commas when declaring an enumerated type to help prevent copy-paste errors.

Declaring enhanced enums
#
Dart also allows enum declarations to declare classes with fields, methods, and const constructors which are limited to a fixed number of known constant instances.
To declare an enhanced enum, follow a syntax similar to normal classes, but with a few extra requirements:
	Instance variables must be final, including those added by mixins.
	All generative constructors must be constant.
	Factory constructors can only return one of the fixed, known enum instances.
	No other class can be extended as Enum is automatically extended.
	There cannot be overrides for index, hashCode, the equality operator ==.
	A member named values cannot be declared in an enum, as it would conflict with the automatically generated static values getter.
	All instances of the enum must be declared in the beginning of the declaration, and there must be at least one instance declared.

Instance methods in an enhanced enum can use this to reference the current enum value.
Here is an example that declares an enhanced enum with multiple instances, instance variables, getters, and an implemented interface:
 dartenum Vehicle implements Comparable<Vehicle> {
 car(tires: 4, passengers: 5, carbonPerKilometer: 400),
 bus(tires: 6, passengers: 50, carbonPerKilometer: 800),
 bicycle(tires: 2, passengers: 1, carbonPerKilometer: 0);

 const Vehicle({
 required this.tires,
 required this.passengers,
 required this.carbonPerKilometer,
 });

 final int tires;
 final int passengers;
 final int carbonPerKilometer;

 int get carbonFootprint => (carbonPerKilometer / passengers).round();

 bool get isTwoWheeled => this == Vehicle.bicycle;

 @override
 int compareTo(Vehicle other) => carbonFootprint - other.carbonFootprint;
}

merge_type Version note
Enhanced enums require a language version of at least 2.17.

Using enums
#
Access the enumerated values like any other static variable:
 dartfinal favoriteColor = Color.blue;
if (favoriteColor == Color.blue) {
 print('Your favorite color is blue!');
}

Each value in an enum has an index getter, which returns the zero-based position of the value in the enum declaration. For example, the first value has index 0, and the second value has index 1.
 dartassert(Color.red.index == 0);
assert(Color.green.index == 1);
assert(Color.blue.index == 2);

To get a list of all the enumerated values, use the enum's values constant.
 dartList<Color> colors = Color.values;
assert(colors[2] == Color.blue);

You can use enums in switch statements, and you'll get a warning if you don't handle all of the enum's values:
 dartvar aColor = Color.blue;

switch (aColor) {
 case Color.red:
 print('Red as roses!');
 case Color.green:
 print('Green as grass!');
 default: // Without this, you see a WARNING.
 print(aColor); // 'Color.blue'
}

If you need to access the name of an enumerated value, such as 'blue' from Color.blue, use the .name property:
 dartprint(Color.blue.name); // 'blue'

You can access a member of an enum value like you would on a normal object:
 dartprint(Vehicle.car.carbonFootprint);

	⟨ Mixins
	Extension methods ⟩

[image: Dart]

Except as otherwise noted, this site is licensed under a Creative Commons Attribution 4.0 International License, and code samples are licensed under the 3-Clause BSD License.
	Terms
	Privacy
	Security

